You are here

Mayonnaise Consistency Regular and Low Fat

Introduction

Back extrusion measures mayonnaise firmnessThe following data was gathered for a manufacturer of mayonnaise in an effort to develop a repeatable method for comparing their regular and low fat products. Currently, the product is evaluated using rudimentary sensory methods. While sensory is very important, it is subjective and varies from person to person.

Both a full fat and low fat version were provided to Food Technology Corporation (FTC) for sampling. The goal was to be able to show a difference in the product in a consistent and repeatable manner. Once a target range for product is established using the developed methodology, the producer will be able to make quick decisions based on objective measurements.

 

 

 

 

Materials and Methods

Extuding mayonnaise to compare fat content texture effectsAll testing was done using FTC’s TMS-Pro Texture Analyzer, fitted with a 25N Intelligent Load Cell (ILC). For this test, the Dual Extrusion Cell was used as extrusion is a preferred method in measuring the rheological consistency of a semi-solid product. The results correlate well to the desired creaminess and flow behavior of an oil emulsion colloid. This cell consists of three sample cups, 5 different diameter plungers (1 for forward extrusion, 4 for backward extrusion), and 4 cup bottoms (3 with different size orifices for forward extrusion, 1 solid for backward extrusion). For this application, the back extrusion setup was used. This allows the product to flow up and around the plunger as it moves down in to the product.

Each replication first involved allowing the product to equilibrate to room temperature (approximately 70°F). Once a consistent temperature was reached, 50 grams of product was scooped into the sample cups. Three samples were prepared at once, first the regular product and then the low fat product. The replications were performed as quickly as possible to avoid any variances that change in temperature could effect. For each replication, the plunger traveled to a position that was 10mm from the base of the sample cup at a speed of 250mm/min. After the down-stroke, the plunger moved at the same speed back to the original starting point. The work (area under the curve) was calculated for both the down-stroke and the up-stroke in order to also measure the force exerted by the mayonnaise remaining on the lower face of the plunger - indicative of the thickness and adhesion of the sample.

 

Results and Discussion

Below is the graphical representation of the samples that were tested. The X-axis is displacement and the Y-axis is force.

One can see that there is a clear separation between the two sample types. This graph shows that it took more force to displace the regular product than it did the low fat product.

Below is a table showing the calculations that were done on the above graph.

 

Work Compression Retraction   Compression Retraction
Sample N.mm (mJ) N.mm (mJ) Sample N.mm (mJ) N.mm (mJ)
Regular 1 109.7 74.6 Low Fat 1 72.7136 55.7929
Regular 2 114.9 79.1 Low Fat 2 72.5 55.0
Regular 3 116.9 79.9 Low Fat 3  72.8  55.5
Average 113.8 77.9 Average  72.7  55.4
St. Dev. 3.69 2.83  St.Dev  0.16  0.42
COV 3.24% 3.63%  COV  0.23% 0.75%

 

As with the graph, one can see a clear difference in the two samples in comparing the averages of the replications. The compression numbers represent the work that it took to move the plunger to a set position. The higher the number, the more resistance the mayonnaise provided. One can see that the regular product required significantly more work than did the low-fat product. This trend holds true with the retraction work as well. The regular product required more effort to move the plunger back to the original starting point. One other thing to point out is the coefficient of variation (COV). Typically anything under 10% is considered a valid test. While both of the samples fell well within this range, it’s should be pointed that the low-fat product had a very low COV, indicating that it is more consistent than the regular product. The graph confirms this outcome as all of the low-traces are almost exactly the same.

 

Conclusions

Based on these results, a significant difference between the two products can be produced using the described methodology. While we were able to show a significant difference in these two samples, perhaps the more valuable data to the producer would be to look at how closely the low-fat product reflects the texture of the regular product. Often times with a reduced fat product, the goal is to make it as much like the standard product as possible. An objective way to measure this is crucial in the process as one must be able to consistently measure something if there is any chance of controlling it. Armed with this new data, the processor can now make more informed decisions when it comes to their processing operating procedure as it affects the overall texture of the product.

Trusted by customers across the world

My first contact with FTC was through buying texture analyzer equipment as my area of interest is Rheology. We faced a problem operating the appliance. The company tried hard to help us through the internet, but the University thought it was better to send me to the company branch located in England. I received a highly advanced training course for 10 days free of charge. They provided me with programs that operate the equipment along with the information needed.

It was a great effort and outstanding support. I would like to thank Shirl Lakeway and FTC for providing me with this opportunity and for his continuous help. Finally, I encourage researchers who are interested in the physical properties of foods and dairy to choose FTC as it is a respectable and dependable company and offers the best deals concerning prices and training with different languages, such as Arabic for the Middle East.

Professor Hoda El-Zeini, Dairy Science and Agriculture University - Cairo, Egypt
Professor
https://cu.edu.eg

I am impressed by the great attitude you have toward your customers.

With all the responsibilities you have, but in less than an hour you reply to our one year’s worth of questions, as if you are dedicated to provide support to our company only.

 

 

Ahmed N. Alajaji, Aljazirah Dates and Food, Saudi Arabia
http://www.aljazirahdates.com.sa

The University of Arizona’s Nutritional Sciences Food Lab acquired a Texture Analyzer from Food Technologies about 5 years ago. The company has a great product, which is tailored to food needs. 

We have used the Texture Analyzer for both research projects and as a tool to demonstrate to students how food manufacturers can employ objective testing in product evaluation to show how differing ingredients in the same product can affect quality attributes. Its use adds another dimension to the foods labs.

Drew Lambert has been instrumental in helping with set up for testing and providing support whenever there’s a question. He has been a pleasure to work with and is always accommodating with our needs and schedules.  He has even sent us special attachments for special projects.  We couldn’t ask for a better technical support.  Thanks for a great product and great service.

Patricia Sparks, Ph.D.
Assistant Professor of Practice
https://www.arizona.edu