You are here

Dough Firmness and Stickiness

Situation

dough sample

The firmness of baking dough products is strongly influenced by a number of factors, temperature being a major consideration, especially with frozen or chilled goods. Different dough-based bakery items contain a variety of additional ingredients in addition to the dough element in order to achieve the desired texture of the final baked product. Breads, biscuits, cookies, cakes, dumplings, flatbreads, etc. include flour and water essentially, but also may include yeast (or another leavening agent) plus potentially other liquids, fats or additives to improve taste, shelf-life, color and indeed texture. A processor needs to know the variance in their dough products for quality control and whilst sensory methods can go some way to evaluate variance, our customer wanted to move to more objective and quantifiable measurement. Using texture analysis in correlation with sensory allows the manufacturer to put objective values to their historical data, giving them a more complete understanding of the effect of these influencers on the firmness of the product.

 

Method

All testing used Food Technology Corporation’s (FTC) TMS-Pro Texture Analyzer fitted with a 250 N intelligent loadcell. The test accessory that was suitable ideally designed for our purposes was the 12.7 mm diameter lightweight precision cylinder probe and the samples were tested on the standard fixture table. This was in order to replicate the current evaluation technique which allows for some flow and freedom of movement in the dough once ready for preparation by any recipe-specific shaping, spreading, kneading and baking. Two batches of were supplied, labeled ‘Batch A’ and ‘Batch B’ and after being allowed to equilibrate to ambient temperature, 72°F (22°C), the product was ready for testing. For each replication a measured quantity and similarly shaped patty of dough was tested. The software program moved the probe down until detection of the top of the dough sample, zeroed the load and displacement, and then ran down into the product at 200 mm/min to 5 mm before returning to the zeroed position. The TL-Pro software analyzed the data and calculated the peak force (firmness) attained in three samples from each batch product.

Results

The graphical representation from TL-Pro, of the test results for the 6 samples, is shown here (force applied, against cumulative displacement).

dough stickiness results graph

The two sample groups are clearly distinguishable and within each, the curves are very consistent. Distinct separation between sample sets is an ideal result when measuring a difference caused by a variable. The peak force at the small compression displacement of 5mm, is followed by sharper release and recovery of the product and finally some indication of the stickiness of the dough is recorded as the force moves into tension.

The same results with additional calculations are shown here.

dough stickiness chart

  • Average = arithmetic mean
  • SD = standard deviation
  • CV = coefficient of variation(SD/Mean) x 100

 

Significance

These results, with clear clustering and CV values of less than 3%, clearly demonstrate how this test method can be used to objectively measure the effect of different processing parameters on a dough product’s firmness, recovery and stickiness. This repeatable procedure is suitable for quick and accurate evaluation of how the dough texture will be experienced when being laid out for manipulation prior to baking. Should specific texture assessment be required for other preparation techniques, the utilization of a different test cell and/or probe could easily be incorporated into this texture analyzer-based quality control process.

Trusted by customers across the world

My first contact with FTC was through buying texture analyzer equipment as my area of interest is Rheology. We faced a problem operating the appliance. The company tried hard to help us through the internet, but the University thought it was better to send me to the company branch located in England. I received a highly advanced training course for 10 days free of charge. They provided me with programs that operate the equipment along with the information needed.

It was a great effort and outstanding support. I would like to thank Shirl Lakeway and FTC for providing me with this opportunity and for his continuous help. Finally, I encourage researchers who are interested in the physical properties of foods and dairy to choose FTC as it is a respectable and dependable company and offers the best deals concerning prices and training with different languages, such as Arabic for the Middle East.

Professor Hoda El-Zeini, Dairy Science and Agriculture University - Cairo, Egypt
Professor
https://cu.edu.eg

I am impressed by the great attitude you have toward your customers.

With all the responsibilities you have, but in less than an hour you reply to our one year’s worth of questions, as if you are dedicated to provide support to our company only.

 

 

Ahmed N. Alajaji, Aljazirah Dates and Food, Saudi Arabia
http://www.aljazirahdates.com.sa

The University of Arizona’s Nutritional Sciences Food Lab acquired a Texture Analyzer from Food Technologies about 5 years ago. The company has a great product, which is tailored to food needs. 

We have used the Texture Analyzer for both research projects and as a tool to demonstrate to students how food manufacturers can employ objective testing in product evaluation to show how differing ingredients in the same product can affect quality attributes. Its use adds another dimension to the foods labs.

Drew Lambert has been instrumental in helping with set up for testing and providing support whenever there’s a question. He has been a pleasure to work with and is always accommodating with our needs and schedules.  He has even sent us special attachments for special projects.  We couldn’t ask for a better technical support.  Thanks for a great product and great service.

Patricia Sparks, Ph.D.
Assistant Professor of Practice
https://www.arizona.edu